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Abstract—Smart  City is becoming increasingly
popular all over the word, gaining the status of paradigm
for steering urban and regional strategies oriented to
improve the citizens’ quality of life through IT-led
solutions. Despite of its international relevance, still
consensus on its most significant components and their
reciprocal influence does not exist. Building on a wide
scholarship on Key Performance Indicators (KPI) for
Smart Cities, this paper suggests that System Dynamics
could provide an appropriate conceptual model for
interpreting the dynamic interconnections among the
core components of a Smart City -i.e., Smart
Infrastructures, Smart Institutions and Smart People-.
At this goal, this paper offers a novel application of
System Dynamic, which is used to analyze a robust set of
new data, collected in three different cities. The model
allows modelling and interpreting the role played by
each component in implementing the Smart City
paradigm and offers a new perspective on how to
diversify the concept of Smart City according to site-
specific conditions. Findings show that whilst a Smart
City in a mature stage is highly influenced by the people
and the infrastructure, for a Smart City in a developing
country it is mainly the smart infrastructure component
that shall be emphasized.

Keywords—Smart City Innovation, Sustainable Urban
Development, System Dynamics, Smart Infrastructure, Smart
Institution, Smart People

I. INTRODUCTION

Global demographic projections show an increase of urban
residents, due to natural growth combined with rural population
moving to cities. This trend posites a challenge but also
represents an opportunity to address sustainable urban
development with greater impact on the wider environment.
Having an efficient organisation of cities in place is therefore
imperative. By adopting the Smart City concept, there is a
widespread aspiration that chances to make cities more capable
to meet people needs and to pursue sustainable development
goals will be increased. This should be achieved by adopting
innovative technologies enabling
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stakeholders to re-cast the concept of urbanization and
development through Smart and Sustainable City evolution.
Batty [1] in using the systems’ theory to explain the
paradigm shift in the evolution of cities, described cities as
complex systems organically growing through a bottom up
dynamic, in contrast to the top down approach [3]. In this
context, cities are regarded as different kinds of features
knotted together in sets of interactions.

Whereas the adoption of Smart City concept has gained
traction all over the world, there is currently no reliable
existing framework model of indicators to measure the
impacts of smartness or how intelligent cities have become;
neither has any research effort addressed the summarisation
of existing models [4]. The development of framework
models that consider the dynamic and interrelated impacts
of the core components of Smart Cities to support timely
decision-making among stakeholders is still an open
research subject.

In this paper, we build on the novel framework for Key
Performance Indicators (KPIs) for measuring the impacts of
Smart Cities in Emerging Economies [2] utilising the core
factors and indicators established from the sequential
methodologies adopted for the investigation. The purpose of
this work is to explain the causal relationships among the core
components of Smart Cities through System Dynamics’
modelling and simulation. The remaining part of this paper is
organised into four main sections. Section II provides
background information and state of the art in the Smart City
and System Dynamics’ modelling approaches. Section IIT
discusses methods, data and the models. Section IV presents
case study results and the model equations from the
simulations. Finally, Section V summarises the conclusion and
presents the direction for future research work.

II. BACKGROUND

A. Smart City Definition

Smart City is an important area of research that has
elicited significant interest among researchers. There have been
several definitions of the term ‘Smart City’. A well-known
definition is the one proposed by Forrester, according to which
a Smart City can be defined through ‘the use of
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smart computing technologies to make the critical
infrastructure components and services of a city — which
include city administration, education, healthcare, public
safety, real estate, transportation, and utilities — more
intelligent, interconnected, and efficient’ [5]. Another
leading definition is the one proposed by IBM [6], which
reflects the industry perspective: ‘a Smarter City uses
technology to transform its core systems and optimize
resources. Smarter Cities are knowledge-based systems that
provide real-time insights to stakeholders, as well as
enabling decision makers to proactively manage the city’s
sub-systems. This is a definition that has been made at the
highest levels of maturity. Effective information
management is critical to this this capability, and key
enablers include integration and analytics’ [7].

Lee et al. [8] cited a Gartner definition which states that ‘a
Smart City is based on an intelligent exchange of information
that flows between its many different subsystems. This flow of
information is analysed and translated into citizen and
commercial services. The city will act on this information flow
to make its wider ecosystem more resource-efficient and
sustainable. The information exchange is based on a smart
governance operating framework designed for sustainable
cities’. According to the authors, the concept of Smart City
derives its definition from a variety of terms such as: ubiquitous
city, knowledge city, information city, intelligent city, digital
city, and information city. After a critical review of the
different attributes of the Smart City concept, the authors
concluded that ‘Smart Cities are envisioned as creating a better,
more sustainable city, in which people’s quality of life is
higher, their environment more livable and their economic
prospects stronger’.

According to Chourabi et al. [9] the Smart City concept
connects a variety of different infrastructures in the wider
meaning of the term (from business to the physical, from the
social to the IT), to exploit the potential of the collective
intelligence of the city. Batty et al. [10] noted that Smart Cities
are simply ‘instruments for improving competitiveness in such
a way that community and quality of life are enhanced’. The
International Telecommunications Union (ITU) also sought to
achieve a shared definition of Smart and Sustainable Cities and
at this aim it analysed over 100 publications [7] through a
ITU’s focused group analysis, thus discovering that Smart City
definitions kept revolving around 50 keywords like ICT, quality
of life, systems, management, technology, intelligent, integrate,
innovations, etc.

In summary, a major aim for Smart Cities is to ensure
improved services and quality of life, hence the concept of
the Smart City is clearly related to the objective to improve
the quality of life in today’s densely populated cities around
the globe, and to overcome exclusion in the access to the
basic services. In this context, it is crucial for Smart Cities to
leverage on social innovation and emerging technologies
such as the Internet of Things (IoTs), Cloud Computing,
Open Data, Big Data analytics, and the Cloud of Things as
platforms for pursuing integrated solutions and achieving
sustainable urban development.

B. Assessing Smart City Standards: a Framework

There is a growing interest and debate about standardizing
the metrics for monitoring cities’ development, from which
different perspectives have emerged. As an example, City
Protocol has developed a hierarchical model

for city governance, evaluation, and transformation [11]. This
model combined the original City Anatomy CPA-I 001 body of
knowledge, Anatomy Indicators CPA-PR 002, Anatomy
Ontology CPAPR 003, and Livable District CPC 004, etc. As
expected, cities in different regions of the world are unique and
present different developmental challenges based on their
experience and history. For instance, some deal with challenges
of congestion, insecurity, and energy while others deal with
challenges such as environmental pollution [12]. The issue of
measuring and monitoring the smartness of the cities has been
resolved by releasing standards, which now include the ISO-
37101 Sustainable Development and Resilience Communities —
Management Systems; ISO-37120 standard for the Sustainable
Development and Resilience of Communities - Global City
Indicators for Service and Quality of Life; NIST — Internet of
Things (IoT) Enabled Smart City Framework; ITU Smart
Sustainable Cities; Spanish Standards (AENOR) — UNE
178301 on Open Data; and UNE 178303 Requirements for
Municipal’s Asset Management, etc. A comprehensive
discussion on Smart City standards and frameworks for impact
assessment has been developed in previous studies, leading to
propose a novel KPIs framework enabling to measure impacts
of Smart Cities in Emerging Economies [2].

C. Smart City Initiative as Complex Systems in Need of a
System Dynamics’ Approach

As planners and environmental evaluators, Lombardi et
al. [13] in their work on modelling Smart Cities’
performance, argued that a city is a complex system and the
complexity is a result of some unpredictable interactions.
According to these authors, the complex systems of cities
exhibit unpredictable behaviours from which, when certain
actions are taken, it is possible to generate feedback.
Complexity, according to Dodgson and Gann [14], increases
with diversity and these authors feel that approaches are
required that are adaptive and collaborative in nature. In
addition, the complex system of a city is a valuable image
when related to the evolution of information systems [15].
Assessing the performance of Smart Cities, therefore,
requires a complex model that can address the core
components of cities for effective decision-making.

Exploring the systems’ approach as described in different
bodies of work (for example in the works of Harrison and
Donnelly [15] and Dodgson and Gann [14]) and assessing the
performance of cities can be achieved effectively through the
modelling of the core sub-systems of a city in order to simplify
the complex systems of the Smart City innovation.
Interestingly, systems’ science scholars such as Sterman [16]
recommend modelling as a means of simplifying the complex
processes and the ways of making responses quicker and more
effective. Sterman suggested modelling as complement to other
tools and not to be used as a substitute.

Because cities are organic in the way they evolve over
time, a systems’ dynamic approach is suitable for assessing
the innovation ecosystems of cities in order to provide
guidance for planners, policy makers and innovators on the
appropriate course of actions in all their efforts to make
cities more liveable and sustainable.
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D. The Need for a System Dynamics Approach in
Smart Cities

System Dynamics relates to research on system
information feedback and an approach to solving problems
inherent in systems. The complexity of cities as systems in
this scenario relates to the issue of clarity of the level of
interaction among the city sub-systems over time. System
Dynamics, according to Vafa-Arani et al. [17], is one the
best tools for modelling socio-economic problems with
complex characteristics. Thus System Dynamics is a
methodology and a mathematical modelling approach to
discover the behaviour of complex systems over time. In
system dynamics therefore, the structure of a system is about
the relationships that exist among the system components
which, in this case, has direct implications for the causal
relationships among the core components of Smart Cities
which is the major concern of this study.

As emphasised in the previous section, cities and the
current wave of Smart City innovation is very complex and
dynamic in nature. As Chao and Zishan[18] argued, in their
system dynamics model for passenger transportation
structure evolution for Shanghai city, relying solely on
qualitative and quantitative research methods for analysing
or solving problems comes with certain limitations. Thus,
there is a need for a system dynamics’ approach built on a
good combination of both quantitative and qualitative
methods.

In addition, one of the key objectives of Smart City
innovation is to de-risk investments [19]. Thus, a system
dynamics’ approach seeks to simplify reality requiring
effective solutions with clear-cut baselines for creating
transparency and quantifying metrics of all actions suitable
for studying the dynamism of the core factors of Smart
Cities.

E. System Dynamics and its Applications

In recent years, system dynamic methods have found
applications in different fields for policy analysis and design. A
System Dynamics’ approach has been widely applied in
different fields to gain better understandings of systems with
dynamic, complex, and interacting with nonlinear variables
[20]. The System Dynamics’ methodology, according to Xu
and Coors [20], has been applied in telecommunications,
software engineering, energy and power production systems,
performance evaluation, policy analysis, etc. System
Dynamics are growing at an exponential rate spreading to
many areas as people appreciate their ability to represent the
real-world (Forrester [21]). The system dynamics’
methodology, according to Sterman [16], was originally
developed in the 1950s to assist industry leaders in
improving their understanding of the behaviour of complex
social systems especially in the industrial context. As noted
by Forrester [21], System Dynamics have developed from
systems’ thinking as a modelling method and it is an aspect
of systems’ theory that deals with a method for
understanding the dynamism of complex systems.

System Dynamics, according to Sterman [16], can be
applied to any dynamic system. This author cited use cases in
corporate strategy formulation, healthcare related policies, and
the automobile industry where the approach has been applied
successfully. According to Fiksel [22], in developing strategies
for economic growth, environmental sustainability,
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and a host of other challenges, the system dynamics’
approach has been adopted by researchers to comprehend a
holistic view of policies and development.

In the built environment, urban dynamics was the first
modelling work produced by the earliest system scientists at
MIT that generated strong emotional reactions (Forrester
[23]). In addressing environmental problems, the system
dynamics’ method is being applied to ecological problems.
For instance, in the work of Park and Kim [24], using the
System Dynamics’ approach in modelling the management
policy implementation of a water supply system, the authors
analysed the effects of investment on water quality
improvements for a city region in Busam, South Korea and
concluded that the System Dynamics’ model helped to
quantify the benefits of the investment in the efficient
waste-water treatment in the upstream sector for the city. In
this study, the System Dynamics’ principle is adopted to
assess and interpret the causal relationships that exist among
the core components of Smart Cities.

F. Application of a System Dynamics Approach in Smart

Cities

The application of a System Dynamics’ methodology in
addressing the complex problems of cities is no longer new.
For instance, Tsolakis and Anthopoulos [25], in their
integrated framework for an “eco-city”, adopted a System
Dynamics’ methodology to assess the sustainability of an
eco-city in order to assist policy makers and urban planners
on effective policies for monitoring and assessing the
sustainability performance of eco-cities. The holistic System
Dynamics’ methodological framework used case study data
generated from a multi-method approach in Hsmichu city,
Taiwan and in Tiamjin city in China. Similarly Chao and
Zishan [18], in proposing the Shanghai passenger
transportation structure evolution model, applied the System
Dynamics’ approach based on transportation survey data to
validate their proposed model for a passenger transportation
structure.

In environmental sustainability, which is at the core of
Smart City innovation, Saysel et al. [26] employed the
System Dynamics’ methodology for an experimental
analysis of a long-term environmental sustainability in
policy making. The authors addressed a range of issues
related to regional agricultural projects and water resource
development but the analysis was focused on the totality of
the environmental, social, and economic-related issues. In
addition, Chen et al. [27] applied the concept of System
Dynamics to analyse the causal relationships of air pollution
problems resulting from transportation and the complex
system of urban development. Their proposed sustainable
urban development model for assessing air purification
policies for Taipei city was based on System Dynamics’
modelling.

The previous sections suggest that the main focus of
System Dynamics is to understand how system components
interact, how the changes in one component impact on the
other components, and how such changes affect the entire
system [28]. The interactions in System Dynamics are based
on the three building blocks (modes) of positive feedback
(reinforcing loops), negative feedback (balancing loops) and
delay (negative feedback with delay). Other more complex
patterns of behaviour, according to Sterman [16], arise due
to the nonlinear interaction among these structures. System
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Dynamics’ models can be qualitative (conceptualisation) or
quantitative. System scientists have argued that a quantified
simulation model is always superior to a qualitative model
[29]. While a qualitative model is mainly utilised for creating
cause-effects diagrams, quantitative models are devoted to
simulation. The qualitative and quantitative data collection for
System Dynamics can also incorporate interviews, surveys,
focus groups, experiments, and observation [30]. In this study,
a variety of these data collection approaches was employed
during the field investigation.

III. METHODS, DATA AND THE MODEL

This study uses a multi-case study approach within the
three cities of Boston, Abuja and Manchester to establish the
core components of Smart Cities and the associated factors
and indicators for assessing the impacts of smartness. After
analyzing the feedback from the pilot study with
stakeholders in Federal Capital Territory (FCT) Abuja, a 3-
component factor was established (see Table 1). The general
structure of the model is based on the outcomes from the
empirical data from the case study analysis and the
correlation analysis of the survey components conducted in
Abuja to validate the core factors/indicators of Smart City
KPIs extracted from the literature and experts’ interviews.

TABLE 1: STRUCTURE COEFFICIENT OF EXTRACTED
COMPONENTS

Item Component
T 7

SCOMPS 0.955]
SCOMP§ 0.955]
SCOMP3 0.949|
SCOMPI3 0.933]
SCOMPIS 0.927]
SCOMPI9 0.923]
SCOMP17 0.922]
SCOMP10 0.884)
SCOMPY 071
SCOMP14 0.651
SCOMPT 0.394] 0.907]
SCOMP6 0.336| 0.905
SCOMP4 0.397] 0.903
SCOMPI2 0.395] 0901
SCOMPIS 0375/ 0.868]
SCOMPI 0.449| 0.864]
SCOMPI1
SCOMPI6

0.994]
0.993]

SCOMP2 0.991

The case study analysis and the survey covered the core
Smart City stakeholders in the ICT Industry, Urban Planning
and in academia (see Table 2).

TABLE 2: SUMMARY OF PRIMARY DATA COLLECTION: NUMBER

OF RESPONDENTS
F P t Valid Cumulative
requency ereen Percent Percent
ICT
37 35.2 35.2 35.2
Industry
ValidCity Admin 36 343 34.3 69.5
Academia 32 30.5 30.5 100
Total 105 100 100
For the modelling and simulations, the System

Dynamics’ software application Vensim PLE was employed
in this study. Vensim is an interactive software/simulation
environment that allows for the exploration, development,
analysis and optimisation of the simulation models [31].
Vensim was developed to help system scientists in
improving the quality and understanding of models. It was
introduced to assist in solving problems from a systems’

perspective. The modelling environment utilising Vensim
includes provisions for defining qualitative and quantitative
tests, as well as the automatic execution of a test on a
simulation model called a reality check [32]. It also includes
a method for the interactive tracing of behaviour in a model
structure through causal links [32]. The reality check allows
users to automatically perform validity tests. The test in this
case takes the form: “if test input A is imposed on a valid
model, then behaviour B will result”. However, this only
refers to the behaviour and not the structure. Further
information on using Vensim for System Dynamics
modelling can be found in the work of Eberlein and
Peterson [31].

A. Causal Loop Diagram and Stock and Flow Maps

A systems scientist, Sterman [16], argued that model
boundary charts and sub-system diagrams show the
boundaries and the architecture of a model, however they do
not show how the variables are related. Thus, causal loop
diagrams are flexible and useful tools for diagrammatically
representing the feedback structure of systems in any given
domain. They are simply maps indicating the causal links
that exist among the variables. The arrows of the causal
links point from a cause point to an effect. Fig. 1 depicts the
feedback flow map for a typical Smart City initiative.

SmaﬂCﬂyVisiouo(:\/ v oo {Tpact of Smart I
Rate of Smartness: Smart Smarter City Achieved
City Initiative Progression

Fig. 1: Feedback Flow Map for Smart City Initiative

B. Designing the Model Structure and Stating the
Assumptions

Models can be classified in different ways and according
to different criteria which includes physical or symbolic,
dynamic or static, deterministic or stochastic factors and so
on [33]. With respect to validity, [33] Barlas emphasised
that a choice must be made between “causal-descriptive”
models that are purely theory-like (“White-Box”) and
correlational models that are purely data-driven (“Black-
Box™). On the one hand, the concern of the correlation
model is the aggregate output behaviour and the model is
assessed for validity based on the matches between its
output and the “real” output within some specified range of
accuracy, in which case there is no recourse to the validity
of the individual relationships that exist in the model. A
good example of this type of model is the regression model.
A causal-descriptive model, on the other hand, refers to
statements on how the real system actually operates in some
aspects.

As emphasised by Sterman [34], most of the critical
assumptions in any model, whether mental or formal, are the
implicit ones buried deeply in the system. These
assumptions are usually not known to the modelers and they
are not in the model equation or its documentation. In any
case, it is important to make clear assumptions about the
variables in order to clearly define their boundaries and to
provide the required information on them. Fig. 2 represents
some simplified assumptions as follows:

The smartness of a city as a result of innovation depends
on the rate of smart initiatives.
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A smart City vision flows to ratc of smartness initiatives.

A smart City (a final smarter city) improves by the rate
of smartness, an

The rate of smartness is a function of a Smart City vision
or goal and a final smarter city achieved.

/)

Rate of Smariness: Smart City Achieved:
Smarter City Process Tmproved City
Vision Iuiﬁzﬁves‘?mgessiono g
o

Fig. 2: Causal Loop Diagram for the Smart City Initiative

As captured in the model boundary, the first and most
important assumption is the model’s scope and the focus.
Thus, it places more emphasis and the research focus on the
working mechanism of the core components - Infrastructure,
Institution and People - within the Smart City innovation.
An enabling environment for Smart City innovation is
another key important boundary assumption. The third
important assumption are the units described as factors and
the indicators in the model. In order to explain the causal
relationships amongst the components, the hypothetical
model developed for the simulation was continually revised
to examine the effects.

C. Model Testing and Validation

In order to establish confidence in the accuracy,
soundness and usefulness of a model, it is imperative to
conduct model validation and testing. The techniques
commonly used for model testing and validation include
tests of model structure and tests of model behaviour. The
tests, according to Senge and Forrester [35], can be further
classified into a model structure verification test, a model
parameter verification test, a model extreme-condition test, a
model adequacy test, a model dimensional consistency test,
a model behaviour prediction test, etc. Model testing is
considered an essential part of the modelling process in
System Dynamics to enable validation mainly to uncover
errors and to improve on the model, and to understand the
limitation of the model in order to assist in decision making
[16]. The tests conducted in this study using Vensim are
summarised as follows:

1) Model Structure Verification Test: The model
structure verification test must not contradict the knowledge
about the structure of the real system. The verification may
include comparisons of the model assumptions with
descriptions of decision-making and relationships found in
relevant literature [35]. It is important to note here that the
Vensim application used for the model and simulation in
this study has in-built mechanisms for model testing and
validation. Thus, all the models were properly checked and
verified “ok” showing the causal relationships between, and
the influence of, the variables on one another as shown in
the diagrams. The relationships were guided by the results
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from the correlation analysis conducted for the variables
which eliminated a number of factors with weak correlation
(relationship) in the models. The tests for the model’s
structure were confirmed “ok” in all the diagrams as shown
in Fig. 3a. In addition, the model’s dimensional consistency
was also checked.

2) Model Parameter Verification Test: In System
Dynamics, parameter verification is mainly concerned with
determining whether or not the parameters of the model
correspond conceptually with real life by comparing the
model parameters to the knowledge of the real system [35].
Parameter verification and structure verification tests are
interrelated. As a systems’ scientist [16] has suggested, a
wide range of methods (such as the use of statistical
methods) are available for System Dynamics’ parameter
verification. The other methods include judgemental (based
on interviews), focus groups’ experience, retrieval, experts’
opinion amongst other methods. In this study, a number of
these methods were employed to establish the core factors
and indicators for Smart City assessment metrics starting
from literature evidence established by renowned Smart
Cities’ scholars and Smart City standards, outcome of a
pilot study, and experts’ interviews with key Smart City
stakeholders in Boston, FCT Abuja (with the survey
component) and Manchester respectively. The outcomes of
the field investigation were properly analysed using
appropriate statistical tools and techniques.

3) Model Extreme-Condition Verification Test: As noted
by Senge and Forrester [35], structures in System
Dynamics’ models should permit consistency in
performance even in unusual extreme cases. Sterman [16]
suggested the need to test if the model responds plausibly to
extreme policies, shocks and parameters. Following
established procedures, the model equations and the
simulations in this study were tested at extremely low at “0”
level and high at “100” level. Based on the outcomes, the
models performed very well.

D. The Stock and Flow Diagram for the Smart City
KPI Model

This section discusses the stock and flow diagram for the
proposed Smart City KPI model. The discussion covers the
model diagrams for the Smart Infrastructure, the Smart
Institution, and the Smart People components respectively.
The two fundamental concepts within the System
Dynamics’ theory are the stocks and flows and the feedback
[16]. The causal relationships among the elements of the
System Dynamics’ models are represented in a stock and
flow diagram with algebraic representation for simulation in
order to enhance the analysis of the relationships among the
elements of the model.

The core factors and indicators of Smart City KPIs were
established through correlation analysis using SPSS and the
outcome of the content analysis. Thus, to simulate the
relationships among the core factors and indicators, the
stock and flow diagram for the Smart City was developed
using Vensim software as a modelling tool (see Fig. 3a). It
is important to note here that the variables included in the
stock and flow diagram for the System Dynamics’ model
are variables established from the correlation analysis with
strong correlation coefficients and these variables were also
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confirmed by the experts’ interviews. The factors and
indicators with weak correlation coefficients and those not
mentioned or apparent from the experts’ interviews were not
included in the stock and flow diagrams. To assess the
impacts of one variable on the other parts of the model,
simulations were run to determine the criticality of a
particular variable over another and the entire model.

Based on the individual models, Smart Infrastructure
was established as having four critical factors, namely
Availability of ICT Infrastructure, Environmental
Sustainability, Constant Power Supply, and Secured and
Innovative Transport Systems, with each of the factors
further established with measures of the core indicators.
Similarly, Smart Institution was established as having three
critical ~ factors namely  Transparent  Governance,
Entrepreneurship and Sustainable Development, and
Productivity; also with measures of the core indicators.
Lastly, Smart People was established as having four critical
factors namely Quality of Life, Productivity, Quality
Education, and An Environment that Supports Productivity
together with their respective measures of indicators. The
individual component factors were modeled and tested “ok”
prior to the general model described in Fig. 3a. All the
different factors from the three distinct components and their
corresponding variables (indicators) were used to model the
dynamic KPI model for assessing Smart Cities. The overall
model was also tested “OK” as depicted in Fig. 3a.

o of sk Phore 1

Use of Erommemal
Frndly Vebick

o of Quaied Doctors
Othe Health Professonal per
Hoped

Fig. 3a: Dynamic KPI Model for Assessing Smart Cities

Smart Infrastructure
Smart Institution > Rate of Smart City

Smart People

Smart City

Fig. 3b: Tree Diagram of the Dynamics’ Model for Smart Cities

The Tree Diagram in Fig. 3b above shows the variables
that drive the performance of the rate of Smart City from the
causal loop diagram of the stock and flow in Fig. 3a. The
equation for the model is given by:

Smart City = INTEG (Smart City”0.5+Rate of Smart City).
The unit is given by:
Units: “percent” [0, 100].

The equation of dynamic KPI is shown as follows.

1
SCarow = J (SCo? +5Crare) dit (1)
SCrare = LP(SINF + SINS + SPEO) 2)
L 1
SINF = [ (SINF? +S5Copy? + SINFrgee)dt (3
SINF..;; = 1P {fr:'rm £ 4 Py + ENVae + INT,. ) (4)
SINS = J’{snrs@ + 5Coron? + SINS g )de ()
SINSyare = SP(ESges+ Pro+TG) (6)
SPEO = [ {SPEG[, + 5Coran z-f-SPFﬁ,.ErE] dt (7)
SPEO,ate =P (CRepy + ESRy + QBgy +QLs)  (8)

Where, SCeow is the Smart City growth. SCrac is the
growth rate of Smart City. SINF is the Smart Infrastructure
component. SINFrne is the growth rate of Smart
Infrastructure component. SINS is the Smart Institution
component. SINSre is the growth rate of the Smart
Institution. SPEO represent the Smart People component
while SPEOre is the growth rate of the Smart People.

Before deploying the system for the simulation and
evaluation of the causal influences, the dynamic KPI model
was tested at the extremely low value of 0% and the
extremely high value of 100% level to observe the
consistency of the performance when subjected to unusual
conditions.

IV. A CONCEPTUAL CASE STUDY — SIMULATION RESULTS
AND DISCUSSION

In order to establish the model equation for the three
core components established in this study and the overall
performance of the Smart City model, the correlation
coefficients of the core indicators were loaded onto the
model for simulation. Following the successful loading of
the model with all the values of the indicators, the model
simulation was tested at the two extreme scenarios of 0%
and the 100% level respectively. In doing so, the
performances of the individual components were compared
across the system by adjusting the values for each variable
of a particular component while keeping others unchanged.
For instance, to check the influence of Smart Infrastructure
on the model, all the variables of Smart Infrastructure
components were stepped down to 0% while others were
kept at 100% and the results compared and vice versa.

The same process was repeated for Smart Institution and
Smart People to compare the dynamic impacts of the
individual components on the overall performance of the
model. The results of the simulations in different scenarios
are presented in Figs. 4 to 7.
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Figure 4: Graph of the Dynamic Impact of Smart Infrastructure at 0%,
Smart Institution at 100%, and Smart People at 100%.

Fig. 4 shows the simulation results comparing the
performance of components with the Smart Infrastructure
component stepped down at 0% while keeping the Smart
Institution and the Smart People components at 100%.
Based on the dynamic interrelationship, the result indicates
the strong influence of Smart Infrastructure on the institution
component. The performance of the institution component is
worst at Smart Infrastructure@0. This suggests that when
city infrastructure is poor, it invariably has an adverse effect
on the performance of institutions. However, the people
component still performs optimally well indicating that the
performance of the people is not necessarily tied to the
smarter infrastructure of the city. The blue line represents
infrastructure@0, the red line represents institution@100
while the green line represents people@100 respectively.
Visual inspection of Fig. 4 shows that, as Infrastructure goes
down, it affects the institution component negatively. Using
the examples of initiatives cited in the experts’ interviews,
forward-thinking (smart) institutions seeking to deliver
smarter services in cities naturally influence the need for
infrastructure to deliver such services. For instance, the Air
Quality Monitoring initiative by CityVerve in Manchester
can be seen as a typical example of forward-thinking
institutions seeking to deliver smart services which
definitely need infrastructure (e.g. sensors) for the delivery
of such services. Thus, it holds that the deployment of Smart
Infrastructure is a pre-requisite for institutions to deliver
smarter services which explains the negative impact of
infrastructure@0 on the institution component.

The simulation process was repeated for the Smart
Institution@0. The result is shown in Fig. 5.

Smart Institution

Time (Month)

— ¥ Instimution @0
—— ¥ People@100

¥ Infrastucture@ 100

Fig. 5: Graph of the Dynamic Impact of Smart Institution at 0%, Smart
Infrastructure at 100%, and Smart People at 100%.

Fig. 5 shows the simulation results comparing the
performance of Smart Institution stepped down at 0% while
keeping the infrastructure and the people components at
100%. This indicates an interesting result, namely that the
development of the infrastructure component strongly
influences the performance of the institution component.
Here, the blue line represents institution@0, the green line
represents infrastructure@100, while the red line represents
people@]100. It can be seen clearly that the blue line and the
red line are tied together resulting from the strong influence
of the infrastructure component. The dynamic influence
simply explains the need for building Smart Institutions
alongside deploying Smart Infrastructure for delivering
smart services.

The simulation process was repeated for the Smart
People@0. The result is shown in Fig. 6.
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Fig. 6: Graph of the Dynamic Impact of Smart People at 0%, Smart
Infrastructure at 100%, and Smart Institution at 100%.

Infrastrucrure@ 100

Fig. 6 shows the simulation results comparing the
performance of Smart People stepped down at 0% while
keeping the infrastructure and the institution components at
100%. Here, the performance of people@0 is strongly
influenced by the infrastructure@100 while impacting
negatively on the performance of the institution component.
Again, the blue line represents institution@100, the green line
represents infrastructure@100 and the red line represents
people@0. This suggests that the development of the Smart
Institution component requires an adequate human capacity to
sustain it. Thus, under-performance by the people component
can be an impediment to the institution component. An
example would be building institutions for developing skilled
human capacity (such as universities) without adequate or
expertise to deliver the content. The result also demonstrates
that Smart Infrastructure has great potential for impacting
positively on cities with many unskilled citizens; For instance,
the ongoing innovation for deploying intelligent devices (Smart
Infrastructure) such as drones by forward-looking organisations
like Amazon to deliver services (parcels). In this instance, the
delivery of parcels by un-manned drone to individuals does not
require the recipient to be “smart” to enjoy such services.

Overall, to assess the influence of all the components of
Smart City, the simulation process was repeated for the
Smart City with all the components @100. The result is
shown in Fig 7.
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Fig. 7: Graph of the Dynamic Impact of Smart Infrastructure at 100%, and
Smart Institution at 100%, and Smart People at 100%.

Fig. 7 shows the overall performance of the Smart City
initiatives at the extreme level of 100% for all the
components. The influence of the individual components at
100% shows that each of the KPI components has impacts
on the level of smartness of a city. The result suggests that
the dynamic influence of the institution component reduces
significantly as the development infrastructure for Smart
Cities improves. This result demonstrates that a smarter city
environment at a maturity level with Smart Infrastructure
and Smart People performing well at optimum level does
not necessarily require much influence from the institution
component. This finding also tends to agree with the views
expressed in the existing literature regarding how the
envisioned Smart Cities of being technocratic in nature and
risk of catering for smaller stakeholders--skilled citizen.

It is important to note here that the proposed model is
based on a strong scientific basis and tested methods. This
study therefore provided an opportunity for using tested and
priority factors/indicators as building blocks to develop a
novel framework model as a guide for Smart City
stakeholders especially in developing countries and cities
with a similar history and experience in advanced region.

V. CONCLUSION AND FUTURE WORK

In this paper we modelled and analysed the causal
influence of the core components of Smart Cities. The
resulting system confirmed the criticality of the Smart
Infrastructure components based on their influence on the
performance of city institutions and how they influence the
population (see Figs. 4 and 6). Based on the model, a
Smarter City at a mature stage is highly influenced by
people and infrastructure with very minimal influence by the
institutional components.

The proposed framework model introduces the
dimension of Smart Infrastructure which, prior to this study,
has not been well emphasised. The emphasis on Smart
Infrastructure is unique as it focuses on the importance of
addressing the foundational issues for Smart and Sustainable
City development especially in cities where infrastructure
provision is still a major challenge.

This work is an ongoing research, thus the results are
preliminary. Nevertheless, the tests provide promising
evidence that using the proposed model can help in
summarizing the metrics for assessing the impacts of

smartness on cities especially in developing countries.
However, for an in-depth analysis, further validation efforts
are required to improve some aspects of the model and its
credibility. In the future, therefore, we intend to validate the
model through qualitative data/experts’ opinions as well as
extending the scope of the model’s applicability.
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